
www.manaraa.com

TOWARDS COMPUTER-AIDED LINGUISTIC ENGINEERING

Vers une m~thodologie et des outils pout" ie g~nie linguistique

RI~MI Z A J A C

G R I L

Univers i t6 Blaise P a ~ a l , 34 avenue C a r n o !

F - 6 3 0 3 7 C l e r m o n t - F e r r a n d cedex
remi@ucfsl.uucp

Dans cet article, nous proposons une
m6thodologie de g6nie logiciel pour le
traitement automatique des langues
fond6e sur la g6n6ration (semi-) automa-
tique de programmes de TALN it partir
de sp6cifications formelies.

Cette m6thodologie est concue pour
favoriser la r6utilisation de sp6cifications
linguistiques dans la g6n6ration de dif-
f6rentes applications de TALN, ainsi que
le d6veloppement incr6mental de ces
sp6cifications linguistiques.

Le langage de spdcification fomlelle est
fond6 sur les structures de traits typ6s. La
r6utilisation de spdcifications linguis-
tiques est favoris6e par l'organisation de
ces sp6cifications darts un style par
objets, en plusieurs niveaux de sp6cificit6
croissante. Ce langage est suffisement
puissant pour pouvoir d6crire tout type
d'objet linguistique, et a l'avantage d'uti-
liser une notation largement r6pandue en
TALN,

L'acquisition de connaissances linguis-
tiques formalis6es au moyen de ce lan-
gage peut 6tre automatis6e en utilisant
des outils d'exploration de corpus et des
6diteurs sp6cialis6s fond6s sur ce langage
et directement com~ect6s ?a la base de
connaissances linguistiques.

ACRES DE COLING-92, Nnt, rrE~s, 23-28 ao~r 1992 8 2 7

La g6n6ration de progrmlmaes sp6cifiques
d'aualyse ou de g6n6ration peut ~tre
automatis6e dans la mesure ou les lan-
gages de programmation cibles sont des
langages de programmation logique ~t
contraintes dont les structures de donndes
sont des structures de traits typ6s.

I.es diffdrents 616merits constituant cette
approche sont actuellement darts un 6tat
d'avancement vari6, qbutefois, cette
approehe est d6ja partiellement utilis6e
par diff6rents groupes clans plusieurs pro-
jets nationaux et europ6ens, en particulier
dans le domaine des dictioImai~Tes 61ec-
troniques.

Pltc~c. o1: COLING-92, NAbrIES, AUTO, 23-28. 1992

www.manaraa.com

TOWARDS COMPUTER-AIDED LINGUISTIC ENGINEERING

RI~MI ZAJAC
GRIL

Universit~ Blaise Pascal, 34 avenue Carnot

F-63037 Clermont-Ferrand cedex

remi@ucfsl .uuep

We outline a framework for computer-aided linguistic
engineering based on the automatic generation of NLP
programs from specifications, mid an automated construc-
tion of reusable linguistic specifications. The specification
language is based on Typed Feature Structures, and the
target programming language is a constraint logic pro-
gramming language which data structures are typed fea-
ture structures. Reusability of linguistic specification is
enhanced by the organization of the specifications in an
object-oriented style in several Myers of increasing speci-
ficity, supporting for example the incremental develop-
ment of grammar specification for sublanguages.

1 A framework for NLP Software
Engineering

The development of reliable high-quality linguistic
software is a time-consuming, error-prone, and
costly process. A parser used in an industrial NLP
system is typically developed by one person over
several years. The development of a linguistic engio
neering methodology is one of the major in the
development of a language induslry. The process of
developing an NLP application is an application and
an adaptation of the classicalsoftware engineering
development methodology and follows three major
steps: the initial requirements and specifications
expressed in natural language, the formal specifica-
tion of the system, and finally the implementation of
the system [Biggerstaff/Perlis 89].

The requirements specific to a linguistic engineering
methodology are:

1. The initial requirements are complemented by a
corpus giving typical examples of the texts and
linguistic phenomena contained in these texts to
be treated by the system;

2. The set of formal specifications constitutes a
standardized repository of formalized linguistic
knowledge

reusable across different NLP applications - a
crucial property given the sheer size of granrmars
and dictionaries;

executable - to be able to test the specifications
against corpora.

3. NLP programs are generated (semi-) automati-
cally from formal specifications.

These particularities have the following implica-
tions:

1. The availability of a corpus allows to develop a
methodology based on sublanguages and corpus
analysis, automating the knowledge acquisition
process.

2. The linguistic specification does not include any
information specific to some application (espe-
cially, it does not contain any control informa-
tion), thus the same specification can be reused
for different applications (genericity).

A specification language for describing linguistic
knowledge could be based on a feature logic and
has an object-oriented inheritance style that
makes it possible to distinguish formally between
generic knowledge and specific (e.g., sublan-
guage) knowledge, thus enabling the reuse of
specifications in the development of the specifi-
cations tllemselves.

The expressive power of the specification lan-
guage (a non-decidable subset of first order logic)
allows to remove the conventional distinction
between dictionaries and grammars, providing a
single homogeneous framework for an integrated
development of linguistic knowledge bases.

The use of a feature-based language also favors
standardization, as feature structures become a
"lingua franca" for computational linguists.

Several modem specialized linguistic program-
ming languages can be the targets of the auto-
mated generation process. Since the specification
language is based on typed feature structures, nat-
ural candidates are ~unification-based grammar
formalisms..

3.

Ac~lzs DE COLING-92, NANTEs, 23-28 AO~r 1992 8 2 8 Prtoc. OV COLING-92, NANTES, AUG. 23-28, 1992

www.manaraa.com

A Computer-Aided Linguistic Engineering inethod-
ology should also address the 1011owing poinls:

• strict separation between pure linguistic knowl-
edge and knowledge about strategies tor its use in
a particular application, a condition sine qua non
for reusability;

, concepts of modularity for lingnistic description,
e.g., formal separation of knowledge pertaining
to different levels of linguistic description, orga-
nization of linguistic knowledge in hierarchies
(from generic to specific);

• team organization of linguistic development
projects.

1 R e u s a b l e l i n g u i s t i c d e s c r i p t i o n s

In software engineering, the use of the tenn <<reus-
ability>> covers two main trends: the composition-
based approach and the generation-based approach.
In the first approach, software components can be
plugged together with no or smaU modifications in
order to build software systems: programming lan-
gnages such as ADA or object-oriented languages
are designed to support this type of reuse. This
approach is successful when the components are
small and perform very precise functions, as li3r
numerical analysis [Biggerst,'fff/l'erlis 891. In NLP,
this approach is exemplified by the reu~ of various
,<engines>> such as parsers.

In the second approach, software components are
generated (semi-automatically) from a ~ t of formal
specifications, instantiating these specifications in a
programming language by choosing appropriate data
representations and control structures: the knowl-
edge expressed in the specification is reused in vari-
ous contexts to generate different applications. This
approach is successful when a fair alnount of domain
knowledge is built into the specilication and the gen-
eration environment, e.g., business knowledge in
4GL (Fourth Generation Languages) environments.
Tiffs is the approach we envisage for producing NLP
programs.

To support reusability and incremenlal development
of specifications, we organize and describe linguistic
knowledge using partial specifications and con-
trolled degrees of abstraction in the overall design.
Tiffs approach should of course be supported by a
specification language which will be based on the
concept of partial information and provides the
means of stmcturing a specification in a hierarchy of
subspecifications of increasing specificity.

We envisage three basic levels of abstraction. The
i~titial design of the linguistic domain is rather
abstract and largely free of details. It establishes the
basic buildings blocks, the basic structures and the
foundations of the linguistic domait~. At that level,
we could aim at providing a eonsensual formal deft o
nition of tbese basic building blocks as a first step
towards the definition of standards for representiug
linguistic knowledge. For example, the initial level
of abstraction could start from basic descriptive clas-
siticalions, e.g. at the categorial level nouns, verbs,
etc., and li'om the basic syntactic dependencies
between these categories, and give them a fnrmal
delinition.

A second level of specialization makes choices as
for the distribution of linguistic properties into more
line grained categories. At that level, we observe the
emergence of linguistic theories, where choices are
triggered by tlleoretical assumptions. Given the rela-
tive freedom of structuration, the choice between
competing representations should be guided by the
concern for modularity and reusability (internal con-
sla'aints) and by the external constraints on the cover-
age and the adequacy of the linguistic representation
to the needs of NLP of applications. Linguistic spec-
ifications should be developed as a set of indepen-
dently defined nmdules with well-defined
interconnections: modularity is essential in support-
ing reusability aud team work in the development of
specilications.

At the third level of specialization, the lingnistic
organization principles are instantiated in the fully
detailed description of specilic linguistic phenom-
ena. This level is sufficiently detailed to test the
specification against actual sentences (strings of
word tbnns). Previous levels can 'also be tested but
only against abstract descriptions representing sets
of sentences. Tius is also tile level at which we have
several diflerent i~tstances corresponding to diflerent
sublanguages, each sublanguage description reusing
the same first mid second levels of specification,
freeing the linguistic of redoing the same design
decisions for each instance. There could also be a
smlcturation among sublanguages which could
introduce finer levels of abstraction, thus achieving a
higher degree of reusability.

This overall framework in winch each level sets par-
tial cxmstraints on the most specific instances is able
to support the incremental developnrent of linguistic
knowledge by successive refinements and thus, far-
tiler reusability.

ACTf!S t)'~COLING-92, N^N-I~.s, 23-28 ̂ otJr 1992 8 2 9 I'v:o~:. oI:COLING-92, N^l'rrgs, AUG. 23-28, 1992

www.manaraa.com

2 A linguistic description language

The crucial issue in the generation-based approach
to reusability is the nature and the definition of the
specification language. A specification language has
to be defined and implemented as pure logic to fully
support reusability. It should be suitable to describe
the knowledge of a particular domain and should
build on well-accepted notions and notations for that
domain: here, natural language processing. In NLP,
the emergence of unification-based grammar formal-
isms promoted the use of feature structures as a ,din-
gua franca>, for representing linguistic information.
Although some work on unification-based grammar
formalisms is motivated by reusability of linguistic
specifications (e.g., ,<reversible grammars,,), such
work does usually not address the problem of speci-
fications in engineering terms. Furthermore, these
formalisms make strong assumptions about the
nature of linguistic representation 1 thereby limiting
severely the expressive power of these languages.
The linguistic specification language is based on a
typed version of a logic for feature structures which
allows to define specifications at different levels of
abstraction. Using this language, it will be possible
to eliminate the conventional division between lexi-
cal and grammatical knowledge, and also the divi-
sion between generic and specific (e.g.,
8ublanguage) knowledge.

Such a specification language is executable
(although it is potentially infinitely inefficient), and
it should be executable for two reasons. First, since
the formal specification is the first level of formality
in the conception of a software system, correcmess
cannot be proved by formal means. However, an
executable specification language allows at least to
test the specifications against examples. Second, it
should be possible to derive an actual program (e.g.,
a parser) from a specification. An executable specifi-
cation language ensures the basic feasibility of an
automated generation of NLP programs.

The specification language is formally based on a
subset of first-order logic. In order to make it man-
ageable and intuitive, it employs syntactic constructs
called Typed Feature Structures (TFSs). The ,~vocab-
ulary~ of the language, its signature, consists of
unary predicates (sorts) and binary predicates (fea-
tures). Moreover, there is an ordering on the sorts
(yielding a lower semi-lattice). The structures over
which the language is interpreted are determined in
that they have to satisfy certain axioms: the features
give partial functions, and the ordering on the sorts is

1. Which are sometimes only motivated by processing consider-
ations.

reflected as subset inclusion (unary predicates give
sets). They are not fully specific, however, which
reflects the situation in knowledge representation
where the domain of discourse is not completely
specified. By adding new axioms, this domain is
made more and more specific; in the extreme case,
one structure is singled out.

The sort signature is extendable through (recursive)
definitions of new sorts; these are done by defining
explicit constraints which come from the language
itself (the TFS constraint language). The sorts are
organized into an inheritance hierarchy, with a clean
(logical, algebraic and type-theoretic) semantics of
inheritance in the object-oriented programming
style. The subset of first-order logic can be made
more complex by adding logical connectives, such
as negation and quantification.

Given the signature, which defines the constraints
available to the user, the user has the option to
extend the language by specifying new predicates.
These are interpreted as relations between the ele-
ments of the domain of the respective interpretation
structure. The language is still a subset of first-order
logic; thus, its syntax can be chosen like the one of
definite clauses, but with TFS's instead of first-order
terms.

The specification language thus obtained allows the
user to create partial specifications that can be incre-
mentally extended, and to express controlled degrees
of abstraction and precision. Although of consider-
able expressive power, this specification language is
executable, but the control information is be
abstracted; that is, formally the execution is non-
deterministic, and there will be no explicit program-
ming feature to express control. This has a good rea-
son: control information coded in programs is
specific to particular applicatiorts. For grammars for
example, for the same underlying logical specifica-
tion the control will be different in parsing or in gen-
eration, or even in different parsers (e.g., for
indexing or for granunar checking). Thus, abstract-
ing from control is important for gaining genericity:
logical specifications apply to more problems than
programs. The knowledge specification language is
used in a first step in the generation of correct
programs.

3 Automating the acquisition of
linguistic descriptions

We assume that the acquisition of linguistic informa-
tion will build upon the definition of broad linguistic

AcrF.s DE COLING-92, NANTES, 23-28 AOt~T 1992 8 3 0 PROC. OF COLING-92, NAbrrES, AUG. 23-28, 1992

www.manaraa.com

categories formalized as the initial and secondary
level of linguistic abstraction described above. In a
Computer-Aided Linguistic Engineering fnunework,
the acquisition of linguistic inibrmation is targeted
towards the needs of specific applications: we also
assume that the linguist uses for testing purposes a
set of examples of the kind of text Ire describes (test
case). These exanlples (fire <~corpus>~) can be con-
stmcted (as a way for example to specify file kind of
dialogue envisaged fox" a natural language man.,
machine interface) or can come from existing texts,
for example, existing teclmical documentation,

The acquisition of linguistic iulonuation coltsists in
describing in lull detail the set of linguistic phenom-
ena occurring in the corpus as a specialization of lin-
guistic axioms and principles. The acquisition is
performed in two steps. First, the linguist uses cor-
pus analysis tools to characterize the particularities
of the sublanguage phenomena occurring in the cor-
pus and to define the coverage (sel ot' linguistic cate-
gories) that should be reached, q~en, the linguist
describes formally (i.e., using the specification lan-
guage) in all details phenomena occun'ing in the c o l
pus, using corpus analysis tools to lind examples and
to refine the categorization [Ananiadou 90, Tsujii et
al. 901.

This approach to tim acquisition of linguistic knowl-
edge leads to the delinition of a precise methodology
(basic concepts and working procedures) supported
by a specific set of sollware tools:

. Concepts. The basic concepts underlying this
methodology are the notions of sublanguage and
coverage [Grishman/Kittredge 86, Kittredge/
Lehrberger 82, Gristmlm~lirsclnnan/Ngo 86].
Given a corpus, a linguist should be able to give a
high level description of it in terms of its linguis-
tic particularities which are not lkmnd m other
kinds of texts, and in terms of the set of lingttistic
phenomena which are occurring in it: these con-
cepts should be defined operationally to allow the
linguist to apply them to actual texts.

. Working procedure. A working procedure delines
the steps to be taken in the acquisition of linguis-
tic knowledge, both in larger steps (characteriza-
tion of the corpus, then acquisition) and in details
such as how to document the phenomena
described, to link a formal description to exam-
pies of the corpus, to check the consistency o1' the
description with other parts of the specification,
etc. It also gives examples of, e.g., how to detine
new lexical semantic classes using a cluster anal-
ysis tool (see below).

o Software tools, q he concepts and working proce-
dures are suppo~ted by a set of specialized lin-
guistic software tools integrated in a Computer~
Aided Linguistic Engineering workstation.

These ~ltware tools suplx)rling the acquisition of
linguistic knowledge should have tire tollowiug
functio~mlities:

. Taggh~g. A first set of fmictionafities is to tag a
corpus using linguistic markels such as the cate-
gory of word forms, their inflection, etc. Several
levels of sophistication will be distinguished
depending on the availal~ility of the appropriate
set of pat~uneters: sels of closed categories, sets
of word fonns, sets of nlorphemes, definition of
phrase boundaries, etc.

Text DBMS. A tagged coq)us is be loaded into a
text DBMS for further exploitation, and accessed
through a specialized linguistic interlace (using a
specialized query language).

. Statistics and cluster analysis. Two kinds of
inl2mnation can be extracted linm a tagged corn
pus: statistical inlbnnation and concordance and
clustering ildbnnation. Statistical and clustering
aualysis algorithms will be implemented and
incorlxn'ated ,as l~unctionalities of the linguistic
interlace of the text database.

Semantic editor The essential operation in lin-
guistic acquisition is the creation of specializa-
finns of existing categories. A semantic editor
takes into account the delinition of existing
classes and interactively guides the user in the
creation of instances.

4 A u t o m a t i n g t h e g e n e r a t i o n o f N L P

p r o g r a m s

In the development process sketched above (Section
I) the last step is the implementation of the system.
Automatic gencratinn of NI.P soltware Ires been
locused to the (crucial) domain of lexical resources
(how to build generic rcsom~;es and compilers that
can extract electronic dictionaries from a lexical
knowledge base lbr NLP systems) and to the domain
of ,~reversible grammars,, 1.

The process of transfomfing a specilication into an
elficient program is very similar to compilation. If
the structure of a set of specilication is stable, a com-
piler can be built to genelate a program. This is the
approach envisaged for lexical infnnnation 2. Lexical

]. Seefor exmnple file I)taw.eedings of the ACL Workshop on
Reversible Grammars, Berkeley, June 1991.

Acq3/s DE COLING-92, NANTES, 23-28 An(n 1992 8 3 I l'r~oc. O1: (5OLINGO2, NANTES, AU¢;. 23-28, 1992

www.manaraa.com

information is here considered as <<static, informa-
tion: once the structure of the lexicon is defined, add-
ing or removing an entry will not modify the
compilation process. This is less tree for grammati-
cal information which defines how the basic linguis-
tic buildings blocks, i.e., lexical entries, are
combined into larger structures. Here, the needs may
vary depending on the processing requirements of
different NLP applications. For example, a grammar
checker and an indexing system will most probably
not use the same parsing scheme: they will treat dif-
ferently errors and ambiguities. Thus, a general
approach is needed.

Since the knowledge specification language is exe-
cutable, this means that, to generate a program, there
are two basic choices to be made: the selection of
data structures and the selection of control struc-
tures. The nature and the complexity of these choices
depend on the distance between the specification
language and the targeted programming language.

As a programming language into which the specifi-
cations are derived, we envisage to use the Con-
stralnt Logic Programming (CLP) language LIFE
developed at DEC-PRL [Ai't-Kaci/Meyer 90, Ai't-
Kaci/Podelski 91]. The reason is that its formal foun-
dation has parts in common with the Knowledge
Specification Language; in particular, its basic data
structures are also Typed Feature Structures, thus
ensuring a basic level of compatibility between the
two. Another reason is its descriptive power, its effi-
ciency and its flexibility in execution (~data-
driven.): LIFE subsumes the two main program-
ming paradigms (logic programming, as in PRO-
LOG, and functional programming, as in LISP or
ML). That is, a . logic . (or ~functional>>) program-
mer may stick to his favorite programming style and
still write code in LIFE.

Since the data model is the same, to generate an effi-
cient program form a specification, the user will only
have to select appropriate control structures, For
example, to generate dictionaries for a parsing pro-
gram, the only refinement the user will have to
develop is to define an efficient indexing mechanism
that allows a parser direct access to a lexical entry. In
generating NLP parsers or NLP generators, the user
will have to choose between a functional control
structure (as in ML) or a relational control structure.
as in PROLOG. For the latter, additional choices
have to be made, such as the ordering of clauses, the
introduction of cuts, etc. [Deville 90]. Research in
computational linguistics has identified a few central

2. This is also the approach envisaged in the ESPRIT project
Multilex and in the Eurotra-7 study.

computational concepts appropriate for NLP, among
them regular grammars and regular transducers, aug-
mented context-free grammars and tree transducers.
In particular, augmented context-free grammars are
the framework of the research in so-called ~<revers-
ible grammars>,. This research can be used in the
development of NLP processing schemes defined as
annotations to the specification [Deville 90, Uszkor-
eit 91].

Assuming that a set of specifications is stable, it is
possible to write a specialized compiler to generate a
LIFE program for, e.g., parsing or generation. This
compiler will embed the control choices that a
designer of a parser makes when developing a pars-
ing algorithm. This kind of generation has been
shown practically feasible for lexieal information,
and research on ,<reversible grammars~> has demon-
strated the feasibility for grammatical information as
well (see for exanlple [Dymetman/Isabelle 88] who
present a prototype of a machine translation system
capable of translating in both directions using the
same grammars and dictionaries).

However, we have also a long term more ambitious
goal, which is to develop methods and tools for fi.dly
automating the generation of a program. Using these
tools, the user will interactively guide the system in
the generation of a program, experimenting with var-
ious choices and recording the design decisions for
control to be used in a fully automatic step once the
design is completed [Biggerstaff/Perlis 89].

5 Towards C o m p u t e r - A i d e d

Linguistic Engineering

we have outlined a frmnework for Computer-Aided
Linguistic Engineering based on the concepts of
reusability and automatic programming [Biggerstaff/
Peflis 89], and showed that we have already all the
basic ingredients (although at various degree of elab-
oration):

• aTFS based specification language [Emele/Zajac
90a, Emele/Zajac 90b];

• a TFS based constraint logic programming lan-
guage [Ai't-Kaci/Meyer 90, Ai't-Kaci/Podelski
91];

• a methodology for the generation of NLP pro-
grams [Devine 90, Uszkoreit 91];

• a methodology for linguistic acquisition [Ananiao
dou 90, Tsujii et al. 90].

Acaxs DE COLING-92, NAMES, 23-28 AOt~T 1992 8 3 2 PROC. OF COLING-92, NANTES, AUG. 23-28, 1992

www.manaraa.com

To arrive a a fully detailed framework tlmt could be
implemented in a Computer-Aided Linguistic Engi-
neering workstation, the major parts that need to be
researched and developed are the elaboration of an
annotation system to bridge the gap between the
specification language and the programming lan-
guage, and the development of adequate tools for the
automated acquisition of linguistic knowledge. Of
course, this approach has to be tested on a larger
scale than what have been possible using the partial
implementations available at present.

Part of the framework described in this paper is pres-
ently used in several on-going projects or proposed
in several projects proposals. In the current projects,
the primary domain of application of this framework
is in the area of lexical representations (e.g., the
MULTILEX ESPRIT project, the EUROLANG
EUREKA project, the DELLS LRE proposal),

Acknowledgments. This paper was written while I
was working in the Polygloss project at the IMS
(University of Stuttgart). Many of the ideas pre-
sented in this paper have been discussed during the
preparation of an ESPRIT project proposal on Com-
puter-Aided Linguistic Engineering. I would espe-
ciaUy like to thank Hassan Ai1-Kaci, Gabriel B~s,
Ulrich Heir, Andreas Pedelski, and Harts Uszkoreit.

References

[All-Kaci 84} Hassan Al't-Kaci. A Lattice Theoretic
Approach to Computation based on a Calculus of
Partially Ordered Types Structures. Ph.D Dis~r-
tation, University of Pennsylvania.

[Ail-Kaci 86] Hassan Al't-Kaci. ~<An Algebraic
Semantics Approach to the Effective Resolution
of Type Equations>>. Theoretical Computer Sci-
ence 45,293-351.

[Ai~-Kaci/Meyer 90] Hassan Al't-Kaci and Richard
Meyer. ,~Wiid LIFE, a user manual>>. DEC-PRL
Technical Note PRL-TN-l, Rueil-Malmaison,
France, 1990.

[AiVKaci/Podelski 91] Hassan Alt-Kaci and
Andreas Podelski. <<Towards a meaning of
LIFE~. DEC-PRL Research Report PRL-RR-11,
RueiI-Malmaison, France, June 1991.

[Ananiadou 90] S. Ananiadou. ,<The use of statistical
techniques in identifying sublanguage patterns,.
Eurotra Research Report, 1990.

[Biggerstaff/Perlis 89] Ted J. Biggerstaff and Alan J.
Perlis (eds). Software Reusability, 2 volumes.
ACM Press - Addison-Wesley, 1989.

[Carpenter 90] Bob Carpenter. ~'I~yped feature struc-
tures: inheritance, (in)equality and extensional-
ity)>. Proc. of the Workshop on Inheritance in
Natural Language Processing, Institute for Lan-
guage Technology and AI, Tilhnrg University,
Netherlands, August 1990.

[Deville 90] Yves Deville. Logic programming. Sys-
tematic Program Development. Addison-Wesley,
1990.

[Dymetman/lsabelle 88] Marc Dymetman and Pierre
Isabelle. ,~Reversible logic grammars for machine
translation>>. Proc. of the 2nd International Con-
ference on Theoretical attd Methodological
Issues in Machine 7)'anslation of Natural Lan-
guage, June 1988, Pittsburgh.

[Dymetumn et al. 90] Marc Dymetman, Pierre Isa-
belle and Franqois Perrault. ~(A symmetrical
approach to parsing and generation,. Prec. of the
13th International Conference on Computational
Linguistics - COLING'90, Helsinki, August
1990.

[Emele 1988] Martin Emele. <<A typed feature stmc°
tare unification-based approach to generation>,.
Proc. of the WGNLC of the IECE, Oiso Univer-
sity, Japan, 1988.

[Emele 1991] Martin Emele. <<Unification with lazy
non-redundant copying>>. 29th Annual Meeting of
the ACL, Berkeley, June 1991.

[Emele/Zajac 90a] Martin Emele and Rdmi Zajac.
aA fixed-point semantics for feature type sys-
tems,. Proc. of the 2nd Workshop on Conditional
and :l)~ped Rewriting Systems - CTRS'90, Moll-
trdal, June 1990.

[Emele/Zajac 90b] Martin Emele and Rdmi Zajac.
<<Typed Unification Grammars>>. Proc. of the 13th
International Conference on Computational Lin-
guistics - COLING'90, Helsinki, August 1990.

[Emele et al. 90] Martin Emele, Ulrich Heir, Stefan
Momma and R~mi Zajac. ,<Organizing linguistic
knowledge for multilingual generation>>. Proc. of
the 13th International Conference on Computa-
tional Linguistics - COLING" 90, Helsinki,
August 1990.

[Franz 90] Alex Franz. ,~A parser for HPSG,. CMU
report CMU-LCL-90-3, Laboratory for Computa-
tional Linguistics, Carnegie Mellon University,
July 1990.

[Grishman/Kittredge86] R. Grishman and R. Kit-
tredge. Analyzing Language in Restricted
Domains. Laurence Edbaum, 1986.

[Grishrnan/Hirschman/Ngo 861 Hirschman L. Grish-
man, R. and T.N. Ngo. ,,Discovery procedures for

Ac'r~ DE COLING-92, NAturES, 23-28 AO~" 1992 8 3 3 PROC. OF COLING-92, NANTES, Autl. 23-28. 1992

www.manaraa.com

sublanguage selecfional patterns: initial experi-
ments~. Computational Linguistics, 12(3):205-
215, 1886.

[Kittredge/Lehrberger 82] R. Kittredge and J. Lehr-
berger. Sublanguage: Studies of Language in
Restricted Semantic Domains. De Gruyter, 1982.

[Pollard 90] Carl Pollard. ~Sorts in unification-based
grammar and what they mean~. In M. Pinkal and
B. Gregor (eds.), Unification in Natural Lan-
guage Analysis, MIT Press. (in press)

[Pollard/Moshier 90] Carl Pollard and Drew Mosh-
ier. ~Unifying partial descriptions of sets,>. In P.
Hanson (ed.) Information, Language and Cogni-
tion, Vancouver Studies in Cognitive Science 1,
University of British Columbia Press, Vancouver.
(in press)

[Pollard/Sag 87] Carl Pollard and Ivan A. Sag. Infor-
mation-Based Syntax and Semantics. CSL1 Lec-
ture Notes 13, Chicago University Press, 1987.

[Pollard/Sag 91] Carl Pollard and Ivan A. Sag.
Agreement, Binding and Control. Information-
Based Syntax and Semantics. Volume 2. To
appear.

[Smolka 88] Gert Smolka. ~A Feature Logic with
Subsorts.. LILOG Report 33, IBM Deutschland
GmbH, Stuttgart.

[Smolka 89] Gert Smolka. ~Feature Constraint Log-
ics for Unification Grammars>~. IWBS Report 93,
IBM Deutschland GmbH, Stuttgart.

[Smolka/A'ft-Kaci 88] Gert Smolka and Hassan Ai't-
Kaci. ,dnheritance Hierarchies: Semantics and
Unificatiom~. J. Symbolic Computation 7, 343-
370.

[Strzalkowski 90] Tomek Strzalkowski. ~How to
invert a natural language parser into an efficient
generator: an algorithm for logic grammars>>.
Proc. of the 13th International Conference on
Computational Linguistics - COLING'90,
August 1990, Helsinki.

[Tsujii et al. 90] Tsujii, J., Ananiadou S., Carroll J.,
and Phillips J.D. ,~Methodologies for the devel-
opment of sublanguage MT systems~. CCL
Research Report CCL/90-10, UMIST, Manches-
ter, 1990.

[Uszkoreit 91] Hans Uszkoreit. ,~Strategies for add-
ing control information to declarative gram-
marsh. In Proceedings of the 1991 Annual
Meeting of the Association of Computational Lin-
guistics, Berkeley, 1991.

[Zajac 89] R6mi Zajac. ~A transfer model using a
typed feature structure rewriting system with

inheritance~. Proc. of the 27th Annual Meeting of
the ACL, 26--27 June 1989, Vancouver.

[Zajac 90a] R6mi Zajac. ,~A relational approach to
translatiom,. Proc. of the 3rd International Con-
ference on Theoretical and Methodological
Issues in Machine Translation of Natural Lan-
guage, 11-13 June 1990, Austin.

[Zajac 90b] R~mi Zajac. ,~Semantics of typed feature
structures~. Presented at the International Work-
shop on Constraint Based Formalisms for Natu-
ral Language Generation, Bad Teinach,
Germany, November 1990.

ACTES DE COLING-92, NANTES, 23-28 AOC'r 1992 8 3 4 PROC. OF COLING-92, NANTES. AUG. 23-28, 1992

